Problemas de Sensibilidad, Especificidad, Valor predictivo positivo y Valor predictivo negativo

1. Supongamos que estamos estudiando una enfermedad en una población que sabemos que tiene una prevalencia de 0.3 (o, en porcentaje, del 30%). La población queda partida en dos grupos: Enfermos (E) y No enfermos (NE). La probabilidad de E es 0.3 y la de NE es 0.7. Supongamos también que podemos aplicar una técnica diagnóstica para ver si una persona tiene o no tiene esa enfermedad. Supongamos que sabemos la probabilidad de que la prueba dé positiva (+) si una persona tiene la enfermedad; o sea, la P(+/E) y que también sabemos la probabilidad de que la prueba dé positiva si una persona no tiene la enfermedad; o sea, la P(+/NE). Si quisiéramos sabe la probabilidad de que cogiendo una persona al azar en esa población la prueba diera positiva; o sea, la P(+) deberíamos aplicar el Teorema de las probabilidades totales. Si lo que nos planteáramos fuera saber que sabiendo que ha dado positiva la prueba en una persona calcular la probabilidad de que sea una persona con la enfermedad; o sea, P(E/+) deberíamos aplicar el Teorema de Bayes. Veámoslo:

IMG_5115

De hecho, aquí, en este ejemplo, aparecen conceptos de una importancia crucial en Medicina. En cualquier procedimiento diagnóstico a la probabilidad P(+/E) se la denomina Sensibilidad, al valor 1-P(+/NE); o sea, a la P(-/NE) se le denomina Especificidad. Y a la probabilidad P(E/+) se le denomina Valor predictivo positivo. Ver el artículo Sensibilidad, Especificidad, Valor predictivo positivo y Valor predictivo negativo.

2. Supongamos que un índice intenta predecir el síndrome de la muerte súbita con una sensibilidad del 68% y una especificidad del 82%. Calcular el Valor predictivo positivo y el Valor predictivo negativo de este índice si se aplica a una población donde se producen un 0.21% de muertes súbitas sobre el total de nacimientos.

Veamos cómo podemos, a partir de los datos que tenemos, plantear el problema planteado como un caso donde aplicar el Teorema de las probabilidades totales y el Teorema de Bayes:

IMG_5116

Una vez planteada esta información podemos aplicar ambos teoremas. Primero, mediante el Teorema de las probabilidades totales, calcularemos la P(+). Luego, mediante el Teorema de Bayes, calcularesmo el Valor predictivo positivo (VPP) y el Valor predictivo negativo (VPN).

Veamos cómo son estos cálculos:

IMG_5118

Es un ejemplo interesante para ver cómo la sensibilidad y la especificidad no son, muchas veces un criterio suficiente para evaluar el uso de un determinado mecanismo diagnóstico. Hemos visto en el artículo referenciado en el problema anterior que una baja prevalencia en una patología hace bajar mucho el Valor predictivo positivo. Y si este valor es bajo, por mucha sensibilidad y especificidad que tengamos, transforma el procedimiento diagnóstico es inoperante, porque difícilmente nos podremos fiar de un valor positivo.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Salir /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s